Ipv4 калькулятор подсетей

IP и маска

Начнем, наверное, с самого начала, а именно с разбора IP 4-ой версии. IPv4 – применяется повсеместно почти во всех сетевых устройствах. Данный параметр нужен для адресации пакетов, а также для обозначения сетевого устройства. Всё аналогично, как на почте – без адреса почтальон не будет знать, куда отправлять информацию.

IPv4 состоит из 32 бита – например, 192.168.28.32. Каждая цифра кодируется в 8 битах и поэтому имеет максимальное число вариантов – 255. В итоге у нас получается диапазон от 0.0.0.0 до 255.255.255.255. Помимо IPv4, есть также и IPv6, который имеет бОльшую длину адреса – 128 бит.

Один бит может принимать вид нуля и единицы – именно эту информацию может понимать компьютер, современный смартфон, телевизор и другие устройства. А так как у нас этих битов 32, то суммарное количество адресов IPv4, которые могут существовать: 2 32 = 4 294 967 296.

ПРИМЕЧАНИЕ! Достаточно много «АйПи» зарезервированы под какие-то нужды. К таким адресам относят: 255.255.255.255, 0.0.0.0, 0.0.0.1 и т.д.

Итак, у нас есть 4 байтовый или 32 битовый адрес. Чаще всего один кусок адреса называют именно байтом, или так называемыми «октетом». Октет – это 1 байт адреса IPv4. Для удобства представления разделяются точками – так проще воспринимается информация.

Таблица масок

Дома в домашних роутерах чаще всего используют 255.255.255.0 или 24я маска. Также часто используют:

  • 29 – 255.255.255.248
  • 30 – 255.255.255.252
  • 27 – 255.255.255.224
  • 26 – 255.255.255.192
  • 32 – 255.255.255.255 (имеет только один узел)
  • 23 – 255.255.254.0

Как определить маску подсети? Тут все зависит от потребности сети, а также от количества подсетей. Для шпаргалки можете сохранить верхнюю таблицу. Маску определяет системный администратор или инженер.

Маршрутизация[править]

Протокол IP требует, чтобы в маршрутизации участвовали все узлы (компьютеры). Длина маршрута, по которому будет передан пакет, может меняться в зависимости от того, какие узлы будут участвовать в доставке пакета. Каждый узел принимает решение о том, куда ему отправлять пакет на основании таблицы маршрутизации (routing tables).

Определение:
Подсеть — логическое разбиение сети IP.

Маска подсетиправить

Длина префикса не выводится из IP-адреса, поэтому протоколу маршрутизации вынуждены передавать префиксы на маршрутизаторы. Иногда префиксы задаются с помощью указания длины.

Определение:
Маска подсети — двоичная маска, соответствующая длине префикса, в которой единицы указывают на сетевую часть.

То есть маска подсети определяет как будут локально интерпретироваться IP адреса в сегменте IP сети, что для нас весьма важно, поскольку определяет процесс разбивки на подсети.

Стандартная маска подсети — все сетевые биты в адресе установлены в ‘1’ и все хостовые биты установлены в ‘0’.
Выполненение операции И между маской и IP-адресом позволяет выделить сетевую часть.

О маске подсети нужно помнить три вещи:

  • Маска подсети предназначена только для локальной интерпретации локальных IP адресов (где локальный значит — в том же сетевом сегменте);
  • Маска подсети — не IP адрес — она используется для локальной модификации интерпретации IP адреса.

Бесклассовая междоменная маршрутизацияправить

Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Таблицы маршрутизации со временем сильно растут, и с этим нужно что-то делать. Маршрутизатор может узнавать о расположении IP-адресов по префиксам различной длины. Но вместо того чтобы разделять сеть на подсети, мы объединим несколько коротких префиксов в один длинный. Этот процесс называется агрегацией маршрута (route aggregation). Длинный префикс, полученный в результате, иногда называют суперсетью (supernet), в противоположность подсетям с разделением блоков адресов.

При агрегации IP-адреса содержатся в префиксах различной длины. Один и тот же IP-адрес может рассматриваться одним маршрутизатором как часть блока /22 (содержащего 210 адресов), а другим — как часть более крупного блока /20 (содержащего 212 адресов). Это зависит от того, какой информацией обладает маршрутизатор. Такой метод называется CIDR (Classless InterDomain Routing — бесклассовая междоменная маршрутизация).

Также префиксы могут пересекаться. Согласно правилу, пакеты передаются в направлении самого специализированного блока, или самого длинного совпадающего префикса (longest matching prefix), в котором находится меньше всего IP-адресов.

По сути CIDR работает так:

  • Когда прибывает пакет, необходимо определить, относится ли данный адрес к данному префиксу; для этого просматривается таблица маршрутизации. Может оказаться, что по значению подойдет несколько записей. В этом случае используется самый длинный префикс. То есть если найдено совпадение для маски /20 и /24, то для выбора исходящей линии будет использоваться запись, соответствующая /24.
  • Однако этот процесс был бы трудоемким, если бы таблица маршрутизации просматривалась запись за записью. Вместо этого был разработан сложный алгоритм для ускорения процесса поиска адреса в таблице (Ruiz-Sanchez и др., 2001).
  • В маршрутизаторах, предполагающих коммерческое использование, применяются специальные чипы VLSI, в которые данные алгоритмы встроены аппаратно.

Классы IP-сетейправить

Раньше использовали классовую адресацию.

Сколько бит используется сетевым ID и сколько бит доступно для идентификации хостов (интерфейсов) в этой сети, определяется сетевыми классами.

Всего 5 классов IP-адресов: A, B, C, D, E.

Их структура и диапазоны указаны на рисунке.

Существует также специальные адреса, которые зарезервированы для ‘несвязанных’ сетей — это сети, которые используют IP, но не подключены к Internet. Вот эти адреса:

  • Одна сеть класса A: 10.0.0.0
  • 16 сетей класса B: 172.16.0.0 — 172.31.0.0
  • 256 сетей класса С: 192.168.0.0 — 192.168.255.0

Стандартные маски подсети для трех классов сетей:

  • A класс — маска подсети: 255.0.0.0
  • B класс — маска подсети: 255.255.0.0
  • C класс — маска подсети: 255.255.255.0

Приложение

Пример конфигурации

Маршрутизаторы A и B соединены через последовательный интерфейс.

Маршрутизатор А

  hostname routera
  !
  ip routing
  !
  int e 0
  ip address 172.16.50.1 255.255.255.0
  !(subnet 50)
  int e 1 ip address 172.16.55.1 255.255.255.0
  !(subnet 55)
  int s 0 ip address 172.16.60.1 255.255.255.0
  !(subnet 60) int s 0
  ip address 172.16.65.1 255.255.255.0 (subnet 65)
  !S 0 connects to router B
  router rip
  network 172.16.0.0

Маршрутизатор В

  hostname routerb
  !
  ip routing
  !
  int e 0
  ip address 192.1.10.200 255.255.255.240
  !(subnet 192)
  int e 1
  ip address 192.1.10.66 255.255.255.240
  !(subnet 64)
  int s 0
  ip address 172.16.65.2 (same subnet as router A's s 0)
  !Int s 0 connects to router A
  router rip
  network 192.1.10.0
  network 172.16.0.0
Class B                   Effective  Effective
# bits        Mask         Subnets     Hosts
-------  ---------------  ---------  ---------
  1      255.255.128.0           2     32766
  2      255.255.192.0           4     16382
  3      255.255.224.0           8      8190
  4      255.255.240.0          16      4094
  5      255.255.248.0          32      2046
  6      255.255.252.0          64      1022
  7      255.255.254.0         128       510
  8      255.255.255.0         256       254
  9      255.255.255.128       512       126
  10     255.255.255.192      1024        62
  11     255.255.255.224      2048        30
  12     255.255.255.240      4096        14
  13     255.255.255.248      8192         6
  14     255.255.255.252     16384         2

Class C                   Effective  Effective
# bits        Mask         Subnets     Hosts
-------  ---------------  ---------  ---------
  1      255.255.255.128      2        126 
  2      255.255.255.192      4         62
  3      255.255.255.224      8         30
  4      255.255.255.240     16         14
  5      255.255.255.248     32          6
  6      255.255.255.252     64          2

  
*Subnet all zeroes and all ones included. These 
 might not be supported on some legacy systems.
*Host all zeroes and all ones excluded.

Интернет-протокол версии 4

Определение префикса сети

Маска подсети IPv4 состоит из 32 бит; это последовательность единиц ( 1 ), за которой следует блок нулей ( ). Единицы указывают биты в адресе, используемом для префикса сети, а завершающий блок нулей обозначает эту часть как идентификатор хоста.

В следующем примере показано отделение префикса сети и идентификатора хоста от адреса ( 192.0.2.130 ) и связанной с ним маски подсети 24 ( 255.255.255.0 ). Операция отображается в виде таблицы с использованием двоичных форматов адресов.

Двоичная форма Точечно-десятичная запись
айпи адрес 192.0.2.130
Маска подсети 255.255.255.0
Префикс сети 192.0.2.0
Идентификатор хоста 0.0.0.130

Результатом побитовой операции И для IP-адреса и маски подсети является префикс сети 192.0.2.0 . Часть хоста, равная 130 , получается побитовой операцией AND адреса и дополнения к единице маски подсети.

Подсети

Разделение на подсети — это процесс обозначения некоторых старших битов из части хоста как части префикса сети и соответствующей настройки маски подсети. Это делит сеть на более мелкие подсети. Следующая диаграмма изменяет приведенный выше пример, перемещая 2 бита от части хоста к префиксу сети, чтобы сформировать четыре меньшие подсети, каждая четверть предыдущего размера.

Двоичная форма Точечно-десятичная запись
айпи адрес 192.0.2.130
Маска подсети 255.255.255.192
Префикс сети 192.0.2.128
Хост-часть 0.0.0.2

Специальные адреса и подсети

IPv4 использует специально назначенные форматы адресов, чтобы облегчить распознавание специальных функций адреса. Первая и последняя подсети, полученные путем разбиения на подсети более крупной сети, традиционно имели специальное обозначение и, с самого начала, особые последствия использования. Кроме того, IPv4 использует адрес узла « все единицы» , т. Е. Последний адрес в сети, для широковещательной передачи всем узлам в канале связи.

В первой подсети, полученной в результате разбиения на подсети более крупной сети, все биты в группе битов подсети установлены в ноль (0). Поэтому он называется нулевой подсетью . В последней подсети, полученной в результате разбиения на подсети более крупной сети, все биты в группе битов подсети установлены на единицу (1). Поэтому она называется подсетью « все единицы» .

Первоначально IETF не одобряла использование этих двух подсетей в производственной среде. Если длина префикса недоступна, большая сеть и первая подсеть имеют один и тот же адрес, что может привести к путанице. Подобная путаница возможна при широковещательном адресе в конце последней подсети. Поэтому рекомендуется зарезервировать значения подсети, состоящие из всех нулей и всех единиц в общедоступном Интернете, уменьшив количество доступных подсетей на два для каждой подсети. Эта неэффективность была устранена, и в 1995 году эта практика была объявлена ​​устаревшей и актуальной только при работе с устаревшим оборудованием.

Хотя значения хоста «все нули» и «все единицы» зарезервированы для сетевого адреса подсети и ее широковещательного адреса , соответственно, в системах, использующих CIDR, все подсети доступны в разделенной сети. Например, сеть 24 можно разделить на шестнадцать используемых сетей 28 . Каждый широковещательный адрес, т.е. * .15 , * .31 ,…, * .255 , уменьшает только количество хостов в каждой подсети.

Количество хостов подсети

Количество доступных подсетей и количество возможных хостов в сети можно легко вычислить. Например, сеть 192.168.5.0 24 может быть разделена на следующие четыре подсети 26 . Выделенные два бита адреса становятся частью номера сети в этом процессе.

Сеть Сеть (двоичная) Адрес трансляции
192.168.5.0/26 192.168.5.63
192.168.5.64/26 192.168.5.127
192.168.5.128/26 192.168.5.191
192.168.5.192/26 192.168.5.255

Остальные биты после битов подсети используются для адресации хостов внутри подсети. В приведенном выше примере маска подсети состоит из 26 бит, что составляет 255.255.255.192, оставив 6 бит для идентификатора хоста. Это позволяет использовать 62 комбинации хостов (2 6 -2).

В общем, количество доступных хостов в подсети составляет 2 ч -2, где h — количество битов, используемых для хостовой части адреса. Количество доступных подсетей равно 2 n , где n — количество битов, используемых для сетевой части адреса.

Есть исключение из этого правила для 31-битных масок подсети, что означает, что идентификатор хоста имеет длину всего один бит для двух допустимых адресов. В таких сетях, обычно двухточечных, могут быть подключены только два хоста (конечные точки), и указание сетевых и широковещательных адресов не требуется.

Сетевая адресация и маршрутизация


Концепция разделения адресного пространства IPv4 200.100.10.0/24, содержащего 256 адресов, на два меньших адресных пространства, а именно 200.100.10.0/25 и 200.100.10.128/25 по 128 адресов каждое.

Каждый компьютер, подключенный к сети, такой как Интернет, имеет как минимум один сетевой адрес . Обычно этот адрес уникален для каждого устройства и может быть настроен автоматически с помощью протокола динамической конфигурации хоста (DHCP) сетевым сервером, вручную администратором или автоматически путем автоконфигурации адреса без сохранения состояния .

Адрес выполняет функции идентификации хоста и определения его местонахождения в сети. Наиболее распространенной архитектурой сетевой адресации является Интернет-протокол версии 4 (IPv4), но его преемник, IPv6 , все чаще используется примерно с 2006 года. Адрес IPv4 состоит из 32 бит. IPv6 — адрес состоит из 128 бит. В обеих системах IP-адрес разделен на две логические части: префикс сети и идентификатор хоста . Все хосты в подсети имеют одинаковый префикс сети. Этот префикс занимает самые старшие биты адреса. Количество бит, выделенных префиксу в сети, может варьироваться в зависимости от подсети в зависимости от сетевой архитектуры. Идентификатор хоста — это уникальный локальный идентификатор, который представляет собой либо номер хоста в локальной сети, либо идентификатор интерфейса.

Эта структура адресации позволяет выборочную маршрутизацию IP-пакетов через несколько сетей через специальные шлюзовые компьютеры, называемые маршрутизаторами , на целевой хост, если сетевые префиксы исходных и конечных хостов различаются, или отправку непосредственно на целевой хост в локальной сети, если они тоже самое. Маршрутизаторы образуют логические или физические границы между подсетями и управляют трафиком между ними. Каждая подсеть обслуживается назначенным маршрутизатором по умолчанию, но внутри может состоять из нескольких физических сегментов Ethernet, соединенных сетевыми коммутаторами .

Префикс маршрутизации адреса идентифицируется маской подсети , записанной в той же форме, что и для IP-адресов. Например, маска подсети для префикса маршрутизации, состоящего из 24 наиболее значимых битов IPv4-адреса, записывается как 255.255.255.0 .

Современная стандартная форма спецификации сетевого префикса — это нотация CIDR, используемая как для IPv4, так и для IPv6. Он подсчитывает количество бит в префиксе и добавляет это число к адресу после разделителя символов косой черты (/). Эта нотация была введена с бесклассовой междоменной маршрутизацией (CIDR). В IPv6 это единственная основанная на стандартах форма для обозначения префиксов сети или маршрутизации.

Например, сеть IPv4 192.0.2.0 с маской подсети 255.255.255.0 записывается как 192.0.2.0 24 , а запись IPv6 2001: db8 :: 32 обозначает адрес 2001: db8 :: и его сетевой префикс, состоящий из старшие 32 бита.

В классовых сетях в IPv4 до введения CIDR сетевой префикс можно было получить непосредственно из IP-адреса на основе его битовой последовательности самого высокого порядка. Это определило класс (A, B, C) адреса и, следовательно, маску подсети. Однако с момента появления CIDR для назначения IP-адреса сетевому интерфейсу требуются два параметра: адрес и маска подсети.

Учитывая исходный адрес IPv4, связанную с ним маску подсети и адрес назначения, маршрутизатор может определить, находится ли пункт назначения в локальной или удаленной сети. Маска подсети места назначения не требуется и обычно не известна маршрутизатору. Однако для IPv6 определение на канале отличается в деталях и требует протокола обнаружения соседей (NDP). Назначение IPv6-адреса интерфейсу не требует совпадения префикса на канале и наоборот, за исключением локальных адресов канала .

Поскольку каждая локально подключенная подсеть должна быть представлена ​​отдельной записью в таблицах маршрутизации каждого подключенного маршрутизатора, разбиение на подсети увеличивает сложность маршрутизации. Однако при тщательном проектировании сети маршруты к коллекциям более удаленных подсетей в ветвях древовидной иерархии могут быть объединены в суперсеть и представлены отдельными маршрутами.

Использование масок в IP адресации

Для того, чтобы получить тот или иной диапазон IP-адресов предприятиям предлагалось заполнить регистрационную форму, в которой перечислялось текущее число ЭВМ и планируемое увеличение количества вычислительных машин и в итоге предприятию выдавался класс IP – адресов: A, B, C, в зависимости от указанных данных в регистрационной форме.

Данный механизм выдачи диапазонов IP-адресов работал штатно, это было связано с тем, что поначалу в организациях было небольшое количество ЭВМ и соответственно небольшие вычислительные сети. Но в связи с дальнейшим бурным ростом интернета и сетевых технологий описанный подход к распределению IP-адресов стал выдавать сбои, в основном связанные с сетями класса «B». Действительно, организациям, в которых число компьютеров не превышало нескольких сотен (скажем, 500), приходилось регистрировать для себя целую сеть класса «В» (так как класс «С» только для 254 компьютеров, а класс «В» — 65534). Из-за чего доступных сетей класса «В» стало, просто на просто, не хватать, но при этом большие диапазоны IP-адресов пропадали зря.

Традиционная схема деления IP-адреса на номер сети (NetID) и номер узла (HostID) основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами — 185.23.0.0, а номером узла — 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски.

Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

  • класс А — 11111111. 00000000. 00000000. 00000000 (255.0.0.0);
  • класс В — 11111111. 11111111. 00000000. 00000000 (255.255.0.0);
  • класс С — 11111111. 11111111.11111111. 00000000 (255.255.255.0).

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

Расчет номера сети и номера узла с помощью маски:

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

  • IP-адрес 129.64.134.5 — 10000001. 01000000.10000110. 00000101
  • Маска 255.255.128.0 — 11111111.11111111.10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» (логическое умножение) на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Существует также короткий вариант записи маски, называемый префиксом или короткой маской. В частности сеть 80.255.147.32 с маской 255.255.255.252, можно записать в виде 80.255.147.32/30, где «/30» указывает на количество двоичных единиц в маске, то есть тридцать бинарных единиц (отсчет ведется слева направо).

Для наглядности в таблице отображается соответствие префикса с маской:

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов. Помимо этого записывать маску в виде префикса значительно короче.

IP-адрес[править]

Определение:
IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP.

IPv4-адресправить

IPv4 использует 32-битные адреса, ограничивающие адресное пространство 4 294 967 296 (232) возможными уникальными адресами. У каждого хоста и маршрутизатора в Интеренете есть IP-адрес. IP-адрес не имеет отношения к хосту. Он имеет отношение к сетевому интерфейсу, поэтому иногда хост или маршрутизатор могут иметь несколько IP-адресов.

IP-адреса имеют иерархическую организацию. Первая часть имеет переменную длину и задает сеть, а последняя указывает на хост.

Обычно IP-адреса записываются в виде 4 десятичных чисел, каждое в диапозоне от 0 до 255, разделенными точками (dot-decimal notation). Каждая часть представляет один байт адреса. Например, шестнадцатиричный адрес 80D00297 записывается как 128.208.2.151.

Определение:
Префикс — непрерывный блок пространства IP-адресов, соответствующий сети, в которой сетевая часть совпадает для всех хостов.

Префикс задается наименьшим IP-адресом в блоке и размером блока. Размер определяется числом битов в сетевой части, оставшиеся биты в части хоста могут варьироваться. Таким образом, размер является степенью двойки. Он записывается после префикса IP-адреса в виде слэша и длины сетевой части в битах. В предыдущем примере префикс содержит 28 адресов и поэтому для сетевой части отводится 24 бита. Записывается так: 128.208.2.0/24.

Сетевые адреса, адреса интерфейсов и широковещательные адресаправить

IP адрес может означать одно из трех:

  • Адрес IP сети (группа IP устройств, имеющих доступ к общей среде передаче — например, все устройства в сегменте Ethernet). Сетевой адрес всегда имеет биты интерфейса (хоста) адресного пространства установленными в 0 (если сеть не разбита на подсети);
  • Широковещательный адрес IP сети (адрес для ‘разговора’ со всеми устройствами в IP сети). Широковещательные адреса для сети всегда имеют интерфейсные (хостовые) биты адресного пространства установленными в 1 (если сеть не разбита на подсети).
  • Адрес интерфейса (например Ethernet-адаптер или PPP интерфейс хоста, маршрутизатора, сервера печать итд). Эти адреса могут иметь любые значения хостовых битов, исключая все нули или все единицы — чтобы не путать с адресами сетей и широковещательными адресами.

IPv6-адресправить

Адрес в IPv6 представляется как восемь групп из четырех шестнадцатеричных чисел, разделенных двоеточиями.
При записи адреса используются следующие правила:

  • Если одна и более групп, идущих подряд, равны 0000, то они опускаются и заменяются на двойное двоеточие.
  • Незначащие старшие нули в группах опускаются.
  • Для записи встроенного или отображенного IPv4 адреса последние две группы цифр заменяются на IPv4 адрес.
  • При использовании IPv6 адреса в URL он помещается в квадратные скобки.
  • Порт в URL пишется после закрывающей квадратной скобки.

Типы IPv6 адресовправить

  • Одноадресный (Unicast) — для отправки пакет на конкретный адрес устройства.
    • Global unicast — глобальные адреса. Могут находиться в любом не занятом диапазоне.
    • Link loсal — локальный адрес канала. Позволяет обменивать данными по одному и тому же каналу (подсети). Пакеты с локальным адресом канала не могут быть отправлены за пределы этого канала.
    • Unique local — уникальный локальные адреса. Используются для локальной адресации в пределах узла или между ограниченным количеством узлов.
  • Многоадресный (Multicast) — для отправки пакетов на группу адресов.
    • Assigned — назначенные адреса. Зарезервированные для определённых групп устройств Multicast адреса.
    • Solicited — запрошенные адреса. Остальные адреса, которые устройства могут использовать для прикладных задач.
  • Групповой (Anycast) — для отправки пакета на «любой» индивидуальный адрес. Такой адрес может быть назначен нескольким устройствам. Пакет будет доставлен ближайшему устройству с этим адресом.

Фрагментацияправить

Большинство каналов передачи данных устанавливают максимальную длину пакета (MTU). В случае, когда длина пакета превышает это значение, происходит фрагментация.

Определение:
IP-фрагментация — разбиение пакета на множество частей, которые могут быть повторно собраны позже.

Итоги по маске IP-адреса.

Само понятие «классы адресов», о котором нет-нет да и приходится читать/слышать, давно устарело. Уже больше 20 лет назад выяснилось, что длина префикса может быть любой. Если же раздавать адреса блоками по /8, то никакого Интернета не получится. Итак: «классов адресов» не существует!

Другой, мягко говоря, странный термин. Иногда говорят «сеть класса такого-то» по отношению к подсети с той или иной длиной маски. Например, «сеть класса C» про 10.1.2.0/24. или что-то подобное. Знайте, так никогда не скажет серьёзный специалист. Класс сети, когда он ещё существовал, не имел отношения к длине маски и определялся совсем другими факторами — а именно комбинациями битов в адресе. Если классовая адресация использовалась, то длина масок тоже была строго регламентирована. Каждому классу соответствовали маски только строго определённой длины. Хотя бы поэтому подсеть 10.1.2.0/24, как в примере, никогда не принадлежала и не могла принадлежать к классу C.

Но лучше об этом не вспоминать

Важно только вот что. «Под одной крышей» в RFC3330 собраны все существующие глобальные конвенции, которые посвящены специальным значениям разнообразных блоков адресов

В них блоки 10/8, 172.16/12 и 192.168/16 (написание сокращённое) определяются как диапазоны для частного использования, запрещённые к маршрутизации в интернете. Другими словами, каждый может использовать их по своему усмотрению, в частных целях.

Пусть вас не удивляет способ написания префиксов, когда полностью отбрасывается хостовая часть: он широко применяется и не вызывает разночтений или недоразумений.

Далее, блок 224.0.0.0/4 зарезервирован для мультикаста, и так далее. Но конвенции — это не совсем законы в полном юридическом смысле слова. Их цель — сделать проще и легче административное взаимодействие. Конвенции крайне не рекомендуется нарушать, но до поры до времени никем не запрещено использовать любые адреса для любых целей. Ровно до того момента, пока вы не встречаетесь с внешним миром

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector