Компилятор

Музыка

В музыкальном бизнесе под компиляцией подразумевается некий музыкальный сборник, включающий в себя песни и мелодии на определённую тематику.

Наиболее часто встречающимися музыкальными компиляциями можно назвать сборники разных исполнителей, объединённых одним временем их написания — «Дискотека 80-х (90-2000-х)», или «Хит-парады» от различных студий звукозаписи или радиостанций.

Также компиляцией называется сборник одного исполнителя, составленный из песен, входящих в различные альбомы, или написанные в различные периоды его творческой деятельности.

Классические компиляции

Классическими компиляциями можно назвать следующие типы музыкальных сборников:

  • Сборник лучших хитов определённого исполнителя. Часто выходят в виде коллекционных дисков. Если же певец до сих пор записывает новые вещи, то в подобные сборники могут включаться одно-два новых произведения, чтобы фанаты только ради них приобрели диск целиком.
  • Раритетные сборники одного исполнителя. В них обычно включаются ранее не выходившие версии песен, внестудийные записи, «квартирники» и прочие ценные для фанатов и «музыкальных гурманов» вещи.
  • Полный набор дисков, охватывающий всё творчество определённой группы или певца. Также подобные коллекции могут охватывать обширные по временным рамкам музыкальные произведения определённого жанра – рок-н-ролл, рок, джаз и т.п.
  • Сборники, составленные по какой-либо определённой теме. Например, песни о любви, армейские песни, студенческий фольклор.
  • Хит-парады. Обычно выпускаются в рамках танцевальной поп-музыки, и представляют лучших исполнителей по разным версиям за последний год.  
  • Семплеры. Сборники молодых, но перспективных исполнителей, выпускаемые звукозаписывающими компаниями на деньги продюсерских центров в рекламных целях. Распространяются бесплатно, либо за чисто символическую плату. Выпуск семплеров организуется для «раскрутки» определённого, ещё малоизвестного певца или группы. Семплеры могут предназначаться для широкой публики, или для внутрикорпоративного использования – для продюсеров, редакторов телерадиостанций.

Создание файла исходного кода на языке C и его компиляция из командной строки

  1. В окне командной строки разработчика введите команду , чтобы изменить текущий рабочий каталог на корень диска C:. Затем введите , чтобы создать каталог, и введите , чтобы перейти к этому каталогу. В этом каталоге будут находиться исходный файл и скомпилированная программа.

  2. В командной строке разработчика введите команду . В появившемся диалоговом окне блокнота с оповещением выберите Да , чтобы создать файл simple.c в рабочем каталоге.

  3. В окне блокнота введите следующие строки кода:

  4. В строке меню блокнота выберите команду Файл > Сохранить , чтобы сохранить файл simple.c в рабочем каталоге.

  5. Вернитесь к окну командной строки разработчика. Введите в командной строке, чтобы получить список содержимого каталога c:\simple. Вы увидите исходный файл simple.c в списке каталогов, который выглядит примерно так:

    Даты и некоторые другие данные будут отличаться на вашем компьютере. Если вы не видите файл исходного кода simple.c, убедитесь в том, что вы открыли созданный каталог c:\simple и сохранили файл исходного кода в нем в Блокноте. Кроме того, убедитесь в том, что исходный код был сохранен с расширением имени файла .c, а не .txt.

  6. Чтобы скомпилировать программу, в командной строке разработчика введите .

    Имя исполняемой программы (simple.exe) отображается в информации, выводимой компилятором.

    Примечание

    Если вы получаете сообщение об ошибке, например «cl не распознается как внутренняя или внешняя команда, исполняемая программа или пакетный файл», ошибке C1034 или LNK1104, командная строка разработчика настроена неправильно. Чтобы получить сведения о том, как устранить эту проблему, вернитесь к разделу Открыть командную строку разработчика.

    Примечание

    Если вы получаете другое сообщение об ошибке или предупреждение компилятора или компоновщика, проверьте исходный код, исправьте ошибки, сохраните его и снова запустите компилятор. Для получения сведений о конкретных ошибках введите номер ошибки в поле поиска вверху этой страницы.

  7. Чтобы запустить программу, в командной строке введите .

    Программа выводит следующий текст и затем закрывается:

    Поздравляем! Вы скомпилировали и запустили программу на C с помощью командной строки.

Подготовка системы

Мы будем компилировать программы, написанные на Си или С++, так как это наиболее используемый язык для программ, которые требуют компиляции. Мы уже немного рассматривали эту тему в статье установка из tar.gz в Linux, но та статья ориентирована больше на новичков, которым нужно не столько разобраться, сколько получить готовую программу.

В этой же статье тема рассмотрена более детально. Как вы понимаете, для превращения исходного кода в команды процессора нужно специальное программное обеспечение. Мы будем использовать компилятор GCC. Для установки его и всех необходимых инструментов в Ubuntu выполните:

Затем вы можете проверить правильность установки и версию компилятора:

Но перед тем как переходить к самой компиляции программ рассмотрим более подробно составляющие этого процесса.

Природа интерпретатора

Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

Такой код быстрее обрабатывается, и его проще написать для исполнителя (части интерпретатора, которая исполняет), который считывает байтовый код, а не код источника.

Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java «запускается» на так называемой виртуальной машине

Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

У меня есть эмулятор для игровой приставки NIntendo. Когда я загружаю ROM-файл Dragon Warrior, он форматируется в машинный код, который понимает только процессор NES. Но если я создаю виртуальный процессор, который интерпретирует байтовый код во время работы на другом процессоре, я могу запустить Dragon Warrior на любой машине с эмулятором.

Это использует концепция компиляции Java, а также все интерпретаторы. На любом процессоре, для которого я могу создать интерпретатор / эмулятор, можно запускать мои интерпретируемые программы / байтовый код. В этом заключается основное преимущество интерпретатора над компилятором.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.
  3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом языке.

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Рабочий цикл программы

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это «запускаемая» часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения «a = 3;» получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Некоторые языки программирования разрабатывались с учетом компиляции. C, например, предназначался для того, чтобы дать возможность программистам с легкостью реализовать разные вещи. Но в итоге он разрабатывался таким образом, чтобы его можно было легко перевести на машинный код. Компиляция в программировании это серьезно!

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в «интерпретирующей» среде, а Python всегда должен интерпретироваться.

Программирование

В программирование под компиляцией подразумевается переделка кода программы, с целью придания ему большей универсальности. К примеру, определённая программа была создана на одном из компьютерных языков. В связи с этим возникает проблема с передачей этой программы иным пользователям, которые работают в другой программной среде.

После этого компилированную программу можно устанавливать на любом компьютерном оборудовании, без необходимости загрузки подходящего к ней программного обеспечения. Отсюда возникает понятие «компилируемые компьютерные языки», то есть, те из них, которые легко разлагаются на базовые коды.

На сегодня в информатике выделяется порядка десяти типов программ-компиляторов, каждый из которых действует своим, особым способом – самокомпилируемый, инкрементальный, векторизующий и т.д.

Компиляция

Процесс компиляции состоит из следующих этапов:

  1. Лексический анализ. Последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический анализ. Последовательность лексем преобразуется в дерево разбора.
  3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла.
  5. Генерация кода. Из промежуточного представления порождается объектный код.

Результатом компиляции является объектный код.

Объектный код — это программа на языке машинных кодов с частичным сохранением символьной информации, необходимой в процессе сборки.

При отладочной сборке возможно сохранение большого количества символьной информации (идентификаторов переменных, функций, а также типов).

Как выполняется компиляция?

Компиляция программы Linux — это довольно сложный процесс. Все еще сложнее, потому что код программы содержится не в одном файле и даже не во всех файлах ее исходников. Каждая программа использует множество системных библиотек, которые содержат стандартные функции. К тому же один и тот же код должен работать в различных системах, содержащих различные версии библиотек.

На первом этапе, еще до того как начнется непосредственно компиляция, специальный инструмент должен проверить совместима ли ваша система с программой, а также есть ли все необходимые библиотеки. Если чего-либо нет, то будет выдана ошибка и вам придется устранить проблему.

Дальше идет синтаксический анализ и преобразование исходного кода в объектный код, без этого этапа можно было бы и обойтись, но это необходимо, чтобы компилятор мог выполнить различные оптимизации, сделать размер конечной программы меньше, а команды процессора эффективнее.

Затем все объектные файлы собираются в одну программу, связываются с системными библиотеками. После завершения этого этапа программу остается только установить в файловую систему и все. Вот такие основные фазы компиляции программы, а теперь перейдем ближе к практике.

Литература

Литературная компиляция более всего отвечает дословному переводу данного термина («кража»). Подобная деятельность заключается в сочинении и составлении неких научных или учебных текстов, основываясь на чужих источниках. При этом не производится их творческая обработка, новое осмысление. В редких случаях компиляцией может являться и литературное произведение, причём как полностью, так и частично.

В этой ситуации компиляцию следует отличать от плагиата – прямого воровства чужой интеллектуальной собственности. В компиляции используется большое число первоисточников, и все они перечисляются либо в виде сносок, либо отдельным списком в конце произведения.

Литературные компиляции обычно преследуют учебные или просветительские цели. Как отдельный вид литературного искусства сформировалась ещё в те годы, когда законодательно установленных положений об авторском праве ещё не существовало. В русской классике к компиляциям в ранние годы своего творчества часто прибегали такие авторы, как М. Лермонтов, К. Батюшков, И. Козлов.

Японская анимация. Полнометражный или короткометражный мультипликационный фильм, созданный по мотивам определённого сериала, в жанре «аниме».

5
1
голос

Рейтинг статьи

Средства сборки проекта

Традиционно, программа на языке C++ собирается средствами утилиты make исполняющей сценарий из файла Makefile. Сценарий сборки можно писать самостоятельно,
а можно создавать его автоматически с помощью всевозможных средств организации проекта. Среди наиболее известных средств организации проекта можно указать следующие.

  1. GNU Toolchain — Старейшая система сборки проектов известная еще по сочетанию команд configure-make-«make install».
  2. CMake — Кроссплатформенная система сборки, которая позволяет не только создать кроссплатформенный проект но и создать сценарий компиляции под любые известные среды разработки, для которых написаны соответствующие генераторы сценариев.
  3. QMake — Достаточно простая система сборки, специально реализованная для фреймворка Qt и широко используемая именно для сборки Qt-проектов. Может быть использована и просто для сборки проектов на языке C++. Имеет некоторые проблемы с выявлением сложных зависимостей метакомпиляции, специфической для Qt, поэтому, даже в проектах Qt, рекомендуется использование системы сборки CMake.

Современные версии QtCreator могут работать с проектами, которые используют как систему сборки QMake, так и систему сборки CMake.

Обзор компиляторов

Существует множество компиляторов с языка C++, которые можно использовать для создания исполняемого кода под разные платформы. Проекты компиляторов можно классифицировать по следующим критериям.

  1. Коммерческие и некоммерческие проекты
  2. Уровень поддержки современных тенденций и стандартов языка
  3. Эффективность результирующего кода

Если на использование коммерческих компиляторов нет особых причин, то имеет смысл использовать компилятор с языка C++ из GNU коллекции компиляторов (GNU Compiler Collection). Этот компилятор есть в любом дистрибутиве Linux, и, он, также, доступен для платформы Windows как часть проекта MinGW (Minumum GNU for Windows). Для работы с компилятором удобнее всего использовать какой-нибудь дистрибутив Linux, но если вы твердо решили учиться программировать под Windows, то удобнее всего будет установить некоммерческую версию среды разработки QtCreator вместе с QtSDK ориентированную на MinGW. Обычно, на сайте производителя Qt можно найти инсталлятор под Windows, который сразу включает в себя среду разработки QtCreator и QtSDK. Следует только быть внимательным и выбрать ту версию, которая ориентирована на MinGW. Мы, возможно, за исключением особо оговариваемых случаев, будем использовать компилятор из дистрибутива Linux.

GNU коллекция компиляторов включает в себя несколько языков. Из них, группу языков Си составляет три компилятора.

  1. g++ — компилятор с языка C++.
  2. gcc — компилятор с языка C (GNU C Compiler).
  3. gcc -lobjc — Objective-C — это, фактически, язык C с некоторой макро-магией, которая доступна в объектной библиотеке objc. Ее следует поставить и указать через ключ компиляции -l.

Создание проекта в Visual Studio 2019

Когда вы запустите Visual Studio 2019, вы должны увидеть диалоговое окно, которое выглядит следующим образом:

Рисунок 2 – Диалоговое окно «Начало работы» Visual Studio 2019

Выберите Создание проекта (Create a new project).

После этого вы увидите диалоговое окно, которое выглядит следующим образом:

Рисунок 3 – Visual Studio 2019: диалоговое окно создания нового проекта

Если вы уже открыли предыдущий проект, вы можете открыть это диалоговое окно через меню Файл (File) → Создать (New) → Проект (Project).

Выберите Мастер классических приложений Windows (Windows Desktop Wizard) и нажмите Далее (Next). Если вы этого не видите, то вы, вероятно, при установке Visual Studio забыли выбрать установку Desktop development with C++. В этом случае вернитесь к уроку «0.6 – Установка интегрированной среды разработки (IDE)» и переустановите Visual Studio, как было показано (примечание: вместо полной переустановки вы можете запустить установщик Visual Studio и изменить существующую установку, чтобы добавить поддержку C++).

Далее вы увидите диалоговое окно, которое выглядит следующим образом:

Рисунок 4 – Диалоговое окно настройки нового проекта Visual Studio 2019

Замените существующее имя проекта на HelloWorld.

Рекомендуется также установить флажок «Поместить решение и проект в одном каталоге» (Place solution and project in the same directory), поскольку это сокращает количество подкаталогов, создаваемых с каждым проектом.

Нажмите Создать (Create), чтобы продолжить.

Наконец, вы увидите последнее диалоговое окно:

Рисунок 5 – Диалоговое окно параметров проекта Visual Studio 2019

Убедитесь, что тип приложения установлен как Консольное приложение (.exe) (Console Application (.exe)), и что параметр Предкомпилированный заголовок (Precompiled Header) не выбран. Затем нажмите ОК.

Вы создали проект! Чтобы продолжить, перейдите в раздел ниже.

Виды компиляторов

  • Векторизующий. Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.
  • Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
  • Диалоговый. См.: диалоговый транслятор.
  • Инкрементальный. Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.
  • Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператор оператора (команды) исходной программы.
  • Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный. Устраняет отдельные виды синтаксических ошибок.
  • Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый. Написан на том же языке, с которого осуществляется трансляция.
  • Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Компиляция программ Linux

Первое что нам понадобиться — это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.

Получение исходников

Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:

Давайте загрузим сами исходники нашей программы с помощью утилиты git:

Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:

Настройка configure

Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.

Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:

Также для создания этого скрипта можно воспользоваться утилитой automake:

Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.

После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:

Рассмотрим наиболее часто используемые, стандартные для всех программ опции:

  • —prefix=PREFIX — папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
  • —bindir=DIR — папка для размещения исполняемых файлов, должна находится в PREFIX;
  • —libdir=DIR — папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
  • —includedir=DIR — папка для размещения man страниц;
  • —disable-возможность — отключить указанную возможность;
  • —enable-возможность — включить возможность;
  • —with-библиотека — подобно enable активирует указанную библиотеку или заголовочный файл;
  • —without-библиотека — подобное disable отключает использование библиотеки.

Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае ./configure есть, и мы можем его использовать:

Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()… configure: error: NOT FOUND!

В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:

Приставка lib всегда добавляется перед библиотеками, а -dev — означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.

Сборка программы

Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:

Дальше осталось установить саму программу, если вы использовали опцию prefix, чтобы не устанавливать программу в основную файловую систему, то можно применить стандартную опцию make:

После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь — создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:

Затем просто установите получившийся пакет с помощью dpkg:

После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.

Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:

Команда удалит все файлы, которые были скопированы в файловую систему.

Заключение

Всегда июмейте всегда в виду, что некоторые языки программирования специально предназначены для компиляции кода, например, C. В то время как другие языки всегда должны интерпретироваться, например Java.

Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

Некоторые системы не предлагают технические условия для эффективного использования интерпретаторов. Поэтому вы должны запрограммировать их с помощью чего-то, что может быть непосредственно скомпилировано, например C. Иногда нужно выполнить вычисления настолько интенсивно, насколько это возможно. Например, при точном распознавании голоса роботом. В других случаях скорость или вычислительная мощность могут быть не столь критичными, и написать эмулятор на оригинальном языке может быть проще.

Сообщите мне, что бы вы предпочли: интерпретацию или компиляцию? Спасибо за уделенное время!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector