Что такое rgb и как используется?
Содержание:
Числовое представление цвета
Как уже было сказано ранее, RGB цвета формируются путем смешивания основных. Для описания интенсивности каждого из них приняли схему, в которой цвет представляется диапазоном 0-255 (8 бит), что в шестнадцатеричной системе исчисления соответствует 00-FF.
То есть, основные цвета будут иметь следующий вид:
- Красный – RGB(255,0,0);
- Зеленый – RGB(0,255,0);
- Синий – RGB(0,0,255);
Если же интенсивность цвета принимает значения меньше 255, то получаются различные оттенки красного, зеленого и синего. Далее приведена таблица их градации, а также представлены шестнадцатеричные значения каждого из оттенков:
Таблицы цветов RGB
Естественно, что кроме градаций основных цветов, существуют смешанные, и их количество довольно велико. Поэтому была создана таблица RGB-цветов, в которой представлены все существующие оттенки, а также приведены их названия и числовые представления (в десятичной и шестнадцатеричной форме).
Ознакомиться с ней можно здесь. Данная таблица здорово облегчает жизнь веб-дизайнерам, так как за несколько секунд можно найти необходимый оттенок и узнать его числовое представление.
Безопасная палитра RGB цветов
Однако в какой-то момент существовала проблема отображения цветов в различных браузерах, и для ее решения была скомпонована так называемая «безопасная» палитра RGB цветов, которые были выведены математическими вычислениями.
Когда браузер не может корректно отобразить цвет, он делает попытки получить близкий к необходимому путем смешивания соседних цветов, и скорее всего результат будет совершенно неприемлем:
Используя коды цветов RGB из данной палитры, веб-разработчик может не бояться за отображение цветов на страницах своего сайта при просмотре с помощью различных браузеров, на различных платформах и мониторах. Хотя на данный момент таблица безопасных цветов теряет свою актуальность (технический прогресс все же не стоит на месте), при ее использовании можно, что называется, спать спокойно.
Золотой цвет в RGB модели
Впервые слово «золотой», было использовано в начале XIV века для описания цвета химического элемента под названием Aurum – золото. В модели RGB золотой цвет представлен следующими числовыми значениями:
- RGB (255, 215, 0) – десятеричная система;
- HEX #FFD700 – шестнадцатеричная система.
Бежевый цвет в RGB модели
Бежевый цвет занимает довольно значимое место в истории, пусть он и не самый выразительный. Многие памятники культуры, особенно античные скульптуры, были изготовлены из стеатита и мыльного камня, обладающих бежевым оттенком. В модели RGB бежевый цвет имеет следующие числовые представления:
- RGB (245, 245, 220) – десятеричная система;
- HEX #F5F5DC – шестнадцатеричная система.
скучный
Способы использования RGB
Прежде всего, цветовая модель RGB используется в устройствах, использующих цвет. Из-за того, что это аддитивная цветовая модель, которая выдает более светлые цвета, когда три основных смешанных цвета (красный, зеленый, синий) являются более насыщенными, RGB лучше всего подходит для отображения излучающего изображения. Другими словами, цветовая модель RGB лучше всего подходит для экранов с подсветкой, таких как телевизоры, мониторы компьютеров, ноутбуков, смартфонов и планшетов.
Для сравнения, CMYK, что означает «Cyan Magenta Yellow Key (Black)» и является производным от CMY, является отражающей цветовой моделью, означающей, что его цвета отражаются, а не освещаются, и используются в основном в печати. Вот почему при калибровке принтера вы работаете с цветовым пространством CMY, а при калибровке дисплея компьютера — с RGB.
Принтеры используют цветовую модель CMYK
Помимо телевизоров и других электронных дисплеев, цветовая модель RGB также используется в других устройствах, работающих с подсвеченными цветами, таких как фото и видеокамеры или сканеры.
Например, ЖК-экраны состоят из множества пикселей, которые образуют их поверхность. Каждый из этих пикселей обычно состоит из трех разных источников света, и каждый из них может стать красным, зеленым или синим. Если вы внимательно посмотрите на ЖК-экран, используя увеличительное стекло, вы увидите эти маленькие источники света, которые образуют пиксели.
Однако, когда вы смотрите на него, как обычный человек, без увеличительного стекла, вы видите только цвета, испускаемые этими крошечными источниками света в пикселях. Комбинируя красный, зеленый и синий и регулируя их яркость, пиксели могут создавать любой цвет.
Источники RGB пикселей на экране
RGB также является наиболее широко используемой цветовой моделью в программном обеспечении. Чтобы иметь возможность указать определенный цвет, цветовая модель RGB описывается тремя числами, каждое из которых представляет интенсивность красного, зеленого и синего цветов.
Однако диапазоны трех чисел могут различаться в зависимости от того, какую систему исчисления вы используете. Стандартные нотации RGB могут использовать тройки значений от 0 до 255, некоторые могут использовать арифметические значения от 0,0 до 1,0, а некоторые могут использовать процентные значения от 0% до 100%.
Например, если цвета RGB представлены 8 битами каждый, это будет означать, что диапазон каждого цвета может изменяться от 0 до 255, 0 — самая низкая интенсивность цвета, а 255 — самая высокая. Используя эту систему обозначений, RGB (0, 0, 0) будет означать черный, а RGB (255, 255, 255) будет означать белый. Кроме того, самый чистый красный будет RGB (255, 0, 0), самый чистый зеленый будет RGB (0, 255, 0), а самый чистый синий будет RGB (0, 0, 255).
Представление цветов RGB в 8-битной системе, каждый цвет в диапазоне от 0 до 255
Диапазон чисел от 0 до 255 выбран не случайно: RGB часто представлен в программном обеспечении 8-битами на канал. Если вам интересно, почему 255 является максимальным значением в 8-битной исчислении, так это потому, что каждый цвет в нем представлен 8 битами. Бит может иметь два значения: 0 или 1. Два бита, будут иметь четыре значения: 00, 01, 10, 11. (в двоичной системе.) Таким образом, восемь битов, дадут 256 значений — от 0 до 255. То есть, два в восьмой степени. Гики, верно?
Однако обычно используются и другие системы исчисления, такие как 16-бит на канал или 24-бит на канал. Например, в 16-битной системе, каждый бит может принимать значения от 0 до 65535, а в 24-битной системе — от 0 до 16777215. 24-битная система охватывает 16 миллионов цветов, что больше, чем все цвета, которые видны человеческому глазу, который различает 10 миллионов.
Система цветопередачи RGB
Этот алгоритм оттенков выстраивается на 3 основных цветах:
- R (red) – красный;
- G (green) – зеленый;
- B (blue) – голубой.
Цвета по этой схеме получаются при смешении с черным. При полном совпадении друг с другом образуют белый цвет. При использовании черного и смешения красного с зеленым получается малиновый, зеленого с голубым – желтый и т. п. Считается, что именно цветовая палитра RGB наиболее насыщенная (имеет более широкий диапазон оттенков) и подходит для печати фотографий, изображений макросъемки. Работающие с графическим редактором, хорошо знают, что при переводе из RGB в цветовую модель CMYK изображение тускнеет.
Однако большинство печатных машин не работают с RGB. Эту цветовую модель используют в струйной печати. То есть RGB применяют при производстве фотографий, а также сублимационной печати на тканях.
CMYK
C детства мы помним, что если смешать красный и жёлтый цвета, то получится оранжевый, а если голубой и жёлтый — то будет зелёный. Мы смешивали эти краски на палитре и рисовали.
В принципе, смешивать можно было не на палитре, а на самом листе: можно было нарисовать светло-голубой листочек, потом пройтись сверху прозрачным жёлтым, и получился бы зелёный листочек. Так делают, когда рисуют акварелью.
Примерно так же работают все современные принтеры и печатные станки. В них залито несколько красок. Сначала принтер проходит одним цветом, потом другим, потом третьим, как бы смешивая эти цвета на листе. И получаются цветные изображения.
Чтобы давать принтеру указания, где какую краску наносить, используют цветовую модель CMYK.
CMYK — это компьютерная цветовая модель, которая имитирует смешивание красок на бумаге. Первые три буквы — это названия цветов, из которых всё смешивается:
Cyan — голубой
Magenta — пурпурный
Yellow — жёлтый
Смешивая в разных пропорциях эти цвета, мы можем получить на бумаге оттенки любого цвета.
CMYK используют для разработки полиграфической продукции, то есть для всего, что печатается на бумаге. Модель CMYK говорит принтеру или печатному станку: «Вот тут нанеси пурпурного, а там нанеси голубого, тут всё залей жёлтым». И если принтер правильно всё нанесёт, получится нужное нам цветное изображение.
Например, если принтеру поручат напечатать одну из наших обложек, он воспримет эту инструкцию так:
Видно, что синий цвет пены получается от смешивания пополам голубого и розового. Красный цвет стен смешивается из пурпурного и жёлтого. А цвет кожи — это жёлтый с небольшим добавлением пурпурного. И отдельно наносятся чёрные линии.
Чтобы получить чёрный цвет, можно смешать все три базовых цвета, но появится проблема: бумаге нужно будет впитать довольно много краски. Если на картинке будет много чёрного, бумага размякнет и может испортиться. А ещё от смешения всех цветов мы в реальности получим не чёрный, а скорее грязно-коричневый.
Решение придумали такое: добавить в модель чёрный цвет. Так появилась модель CMYK: Cyan, Magenta, Yellow, Black. Чёрный используют, чтобы печатать текст и дополнительно подкрашивать чёрные участки изображений.
Обратите внимание, что цвета на этой картинке не «вырвиглазные» и яркие, а приглушённые. Это компьютер пытается отобразить на экране, как эти цвета будут выглядеть на бумаге
Цветовые системы [ править ]
Существуют различные типы цветовых систем, которые классифицируют цвета и анализируют их эффекты. Американская система цветов Манселла, разработанная Альбертом Х. Манселлом, является известной классификацией, которая объединяет различные цвета в одно цветное твердое тело на основе оттенка, насыщенности и значения. Другие важные цветовые системы включают в себя шведскую систему Natural Color (NCS), в Оптического общества Америки «s Uniform Color Space (OSA-UCS), и венгерский Coloroid систему , разработанную Antal Nemcsics из Будапештского университета технологии и экономики . Из них NCS основан на процессе оппонента.цветовая модель, в то время как Munsell, OSA-UCS и Coloroid пытаются смоделировать однородность цвета. Американские коммерческие системы подбора цветов Pantone и German RAL отличаются от предыдущих тем, что их цветовые пространства не основаны на базовой цветовой модели.
Цифровая печать
Цифровая печать на бумаге используется уже давно. Уже так возможна печать металлических упаковок цифровым способом.
Цифровая печать наносит цифровое изображение непосредственно на упаковочный материал. Нет необходимости в промежуточном этапе изготовления пластин с изображениями разных цветов, как при офсетной печати. Профессиональная печать возможна с помощью небольшого настольного издательского программного обеспечения. Печать используется для металлов, таких как алюминий, нержавеющая сталь и латунь. Можно использовать как лазерные, так и струйные принтеры, а чернила могут быть тонерными или ультрафиолетовыми.
Этот метод является универсальным и быстрым: большой заказ может быть выполнен в течение дня, а контроль качества в реальном времени обеспечивает меньшее количество дефектов.
Аддитивные красители
Аддитивное смешивание цветов: добавление красного к зеленому дает желтый; добавление зеленого к синему дает голубой; добавление синего к красному дает пурпурный цвет; сложение всех трех основных цветов вместе дает белый цвет.
По часовой стрелке от верхней: красный , оранжевый , желтый , зеленовато , зеленый , весенний , голубой , лазурный , синий , фиолетовый , пурпурный , и розы
Чтобы сформировать цвет с помощью RGB, три световых луча (один красный, один зеленый и один синий) должны быть наложены друг на друга (например, за счет излучения черного экрана или отражения от белого экрана). Каждый из трех лучей называется компонентом этого цвета, и каждый из них может иметь произвольную интенсивность, от полностью выключенного до полностью включенного, в смеси.
Цветовая модель RGB является аддитивной в том смысле, что три световых луча складываются вместе, а их световые спектры добавляют длину волны к длине волны, чтобы получить окончательный цветовой спектр. Это по сути противоположно субтрактивной цветовой модели, особенно цветовой модели CMY , которая применяется к краскам, чернилам, красителям и другим веществам, цвет которых зависит от отражения света, под которым мы их видим. Благодаря своим свойствам эти три цвета создают белый цвет, что резко контрастирует с физическими цветами, такими как красители, которые при смешивании создают черный цвет.
Нулевая интенсивность для каждого компонента дает самый темный цвет (отсутствие света, считается черным ), а полная интенсивность каждого компонента дает белый цвет ; качество этого белого зависит от характера первичных источников света, но если они надлежащий образом сбалансированы, то результат будет нейтральное белым соответствием системы белой точки . Когда интенсивности для всех компонентов одинаковы, в результате получается оттенок серого, более темный или светлый в зависимости от интенсивности. Когда интенсивности различаются, результатом является окрашенный оттенок , более или менее насыщенный в зависимости от разницы между самой сильной и самой слабой интенсивностями используемых основных цветов.
Когда один из компонентов имеет самую высокую интенсивность, цвет является оттенком, близким к этому основному цвету (красный, зеленый или синий), а когда два компонента имеют одинаковую максимальную интенсивность, тогда цвет является оттенком. из вторичного цвета (оттенок голубого , пурпурного или желтого цвета ). Вторичный цвет образуется суммой двух основных цветов равной интенсивности: голубой — зеленый + синий, пурпурный — синий + красный и желтый — красный + зеленый. Каждый вторичный цвет является дополнением одного основного цвета: голубой дополняет красный, пурпурный — зеленый, а желтый — синий. Когда все основные цвета смешиваются с одинаковой интенсивностью, получается белый цвет.
Сама цветовая модель RGB не определяет колориметрически, что подразумевается под красным , зеленым и синим , и поэтому результаты их смешивания указываются не как абсолютные, а относительно основных цветов. Когда точные цветности красного, зеленого и синего основных цветов определены, цветовая модель становится абсолютным цветовым пространством , например sRGB или Adobe RGB ; см. цветовое пространство RGB для получения более подробной информации.
Цветовая модель RGB
Как и следует из аббревиатуры модели, цветовое пространство RGB (Red — красный, Green — зелёный компонент и Blue — синий) описывает все возможные цвета и их оттенки, которые можно получить при смешивании основных составляющих красного, зелёного, и синего. Такой способ кодирования цвета позволяет описать позволяет представить 16 777 216 различных цветов. Это, пожалуй, самая популярная модель в компьютерной графике за счет 100% совместимости для всех интерпретаторов цвета.
Цифровые значения цветовых коэффициентов RGB – триада целых чисел в диапазоне от до 255. Таким образом, RGB(0, 255, 0) отображается как чисто зелёный, так как величина коэффициента зеленого цвета установлены в максимум, а остальные параметры установлены в 0.
Для удобства программистов, современные браузеры поддерживают представление коэффициентов и в процентном виде от 0% до 100%.
Примеры передачи цвета в WEB при помощи RGB-модели для CSS-стилей элементов:
Цветовое пространство CIE XYZ[править | править код]
Файл:CIE1931 XYZCMF.png
- где — спектральная плотность какой-либо энергетической фотометрической величины (например потока излучения, энергетической яркости и т. п., в абсолютном или относительном выражении).
Для модели брались условия, чтобы компонента Y соответствовала визуальной яркости сигнала ( — эта та самая относительная спектральная световая эффективность монохроматического излучения для дневного зрения, которая используется во всех световых фотометрических величинах), координата Z соответствовала отклику S («short», коротковолновых, «синих») колбочек, а координата X была всегда неотрицательной. Кривые отклика нормируются таким образом, чтобы площадь под всеми тремя кривыми была одинаковой. Это делается для того, чтобы равномерный спектр, цвет которого в колориметрических условиях наблюдения принято считать белым, имел одинаковые значения компонент XYZ и в дальнейшем, при анализе цвета, было проще определять цветовой тон просто вычитая из цвета равные значения XYZ. Функции отклика и координаты XYZ также являются неотрицательными для всех физически реализуемых цветов. Очевидно, что не для каждого сочетания XYZ существует монохроматическая спектральная линия (соответствующий цвет радуги), которая бы соответствовала этим координатам. На графике справа X — красная кривая, Y — зелёная, Z — синяя.
Стоит заметить, что цветовое пространство XYZ не задает сразу отклики колбочек на сетчатке человека, являясь очень сильно преобразованной цветовой моделью с целью получить значения цвета и соответственно возможность отличать один спектр от другого, отталкиваясь от фотометрической яркости излучения (Y). Саму яркость Y интерпретировать как отклик «зеленых» колбочек нельзя, эта функция для дневного зрения, являющегося трехстимульным, задается всеми реальными откликами рецепторов. Изначально модель CIE 1931 XYZ получили путём преобразования модели CIE 1931 RGB, которая, в свою очередь, является следствием прямого эксперимента по смешиванию и визуальному сравнению излучений различных спектральных составов. Любая цветовая модель может быть преобразована в модель XYZ, так как данная модель определяет все правила смешивания цветов и задает ограничения, накладываемые на все спекральные составы излучений, которые имеют один цвет.
Хроматические координаты (x;y) и цветовое пространство xyYправить | править код
Файл:CIExy1931 fixed.svg
Хроматическая диаграмма с длинами волн цветов
Если формально построить сечение пространства XYZ плоскостью , то можно две оставшиеся линейно-независимыми координаты записать в виде
- .
- аналогично, но необязательно:
Такое сечение называется хроматической диаграммой (диаграммой цветности).
В пространстве XYZ точке (X,0,0), как легко посчитать по формулам, на хроматической диаграмме соответствет точка xy=(1,0). Подобным образом, точке XYZ=(0,Y,0) соответствует точка xy=(0,1) и, наконец, точке XYZ=(0,0,Z) — точка xy=(0,0). Видно, что все реальные цвета, полученные любыми спектральными составами излучений, в том числе и монохроматическими (спектральные цвета) не дотягивают до подобных «чистых» значений. Данная закономерность вытекает из правила смешивания цветов и является проявлением того, что невозможно получить отклик одних колбочек без отклика других (хоть и очень малого), а также из того, что яркость Y не может иметь нулевое или малое значение при определенном отклике любых колбочек.
Цветовое пространство xyY можно задать, если задать значение цветности — (x, y) при данном значении яркости Y.
При этом для координат x и y продолжает выполнятся условие неотрицательности.
Физически реализуемые цветаправить | править код
Если на хроматической диаграмме xy отметить все возможные монохроматические цвета спектра, то они образуют собой незамкнутый контур, так называемый спектральный локус. Замыкание этого контура в основании «языка» называется линией пурпуров. Все цвета, которые могут быть реализованы в виде суммы спектральных линий данной яркости, будут лежать внутри этого контура. То есть существуют точки XYZ цветов за пределами контура, которые хотя и имеют положительные значения каждой компоненты, но тем не менее соответствующий отклик от колбочек не может быть получен при данной яркости (константе ).
Другое использование «цветовой модели»
Модели механизма цветового зрения
Мы также используем «цветовую модель» для обозначения модели или механизма цветового зрения для объяснения того, как цветовые сигналы обрабатываются от зрительных колбочек до ганглиозных клеток. Для простоты мы называем эти модели цветными моделями механизмов. Классические цветовые модели механизма Young — Гельмгольц «s трехцветная модель и Геринг » s модель оппонента-процесс . Хотя изначально считалось, что эти две теории противоречат друг другу, позже стало понятно, что механизмы, ответственные за цветовую противоположность, получают сигналы от трех типов колбочек и обрабатывают их на более сложном уровне. Широко принятая модель называется зонной. Модель симметричной зоны, совместимая с теорией трехцветности, теорией оппонента и моделью преобразования цвета Смита, называется моделью декодирования.
Эволюция цветового зрения позвоночных
Позвоночные животные были примитивно четырехцветными . Они обладали четырьмя типами колбочек: длинными, средними, коротковолновыми и чувствительными к ультрафиолету. Сегодня рыбы, земноводные, рептилии и птицы — все четырехцветные. Плацентарные млекопитающие потеряли как средние, так и коротковолновые колбочки. Таким образом, большинство млекопитающих не имеют сложное цветовое зрения, они двухцветные , но они чувствительны к ультрафиолетовому свету, хотя они не могут видеть его цвета. Человеческое трехцветное цветовое зрение — недавняя эволюционная новинка, впервые появившаяся у общего предка приматов Старого Света. Наше трехцветное цветовое зрение развилось за счет дублирования длинноволнового чувствительного опсина , обнаруженного на Х-хромосоме. Одна из этих копий эволюционировала и стала чувствительной к зеленому свету и представляет собой опсин средней длины волны. В то же время наш коротковолновый опсин произошел из ультрафиолетового опсина наших предков позвоночных и млекопитающих.
Человек красно-зеленый цвета слепота происходит потому , что две копии красных и зеленых гены Opsin остаются в непосредственной близости от Й — хромосомы. Из-за частой рекомбинации во время мейоза эти пары генов могут легко перестраиваться, создавая версии генов, не обладающие отчетливой спектральной чувствительностью.
Цветовые системы
Существуют различные типы цветовых систем, которые классифицируют цвета и анализируют их эффекты. Американская система цветов Манселла, разработанная Альбертом Х. Манселлом, представляет собой известную классификацию, которая объединяет различные цвета в одно цветное твердое тело на основе оттенка, насыщенности и значения. Другие важные цветовые системы включают в себя шведскую систему Natural Color (NCS), в Оптического общества Америки «s Uniform Color Space (OSA-UCS), и венгерский Coloroid систему , разработанную Antal Nemcsics из Будапештского университета технологии и экономики . Из них NCS основан на цветовой модели процесса оппонента , в то время как Munsell, OSA-UCS и Coloroid пытаются смоделировать однородность цвета. Американские коммерческие системы подбора цветов Pantone и German RAL отличаются от предыдущих тем, что их цветовые пространства не основаны на базовой цветовой модели.