Что такое центральный процессор?

Основные характеристики процессоров

Мы рассмотрели, что такое процессор компьютера, как он работает

Ознакомились с тем, что из себя представляют два основных их вида, время обратить внимание на их характеристики

Итак, для начала их перечислим: бренд, серия, архитектура, поддержка определенного сокета, тактовая частота процессора, кэш, количество ядер, энергопотребление и тепловыделение, интегрированная графика. Теперь разберем с пояснениями:

Бренд – кто производит процессор: AMD, или Intel. От данного выбора зависит не только цена приобретения, и производительность, как можно было бы предположить из предыдущего раздела, но также и выбор остальных комплектующих ПК, в частности, материнской платы. Поскольку процессоры от АМД и Интел имеют различную конструкцию и архитектуру, то в сокет (гнездо для установки процессора на материнской плате) предназначенный под один тип процессора, нельзя будет установить второй;
Серия – оба конкурента делят свою продукцию на множество видов и подвидов. (AMD — Ryzen, FX,. Intel- i5, i7);
Архитектура процессора – фактически внутренние органы ЦП, каждый вид процессоров имеет индивидуальную архитектуру. В свою очередь один вид можно разделить на несколько подвидов;
Поддержка определенного сокета — очень важная характеристика процессора, поскольку сам сокет является «гнездом» на материнской плате для подсоединения процессора, а каждый вид процессоров требует соответствующий ему разъем. Собственно об этом было сказано выше. Вам либо нужно точно знать какой сокет расположен на вашей материнской плате и под нее подбирать процессор, либо наоборот (что более правильно);
Тактовая частота – один из значимых показателей производительности ЦП. Давайте ответим на вопрос что такое тактовая частота процессора. Ответ будет простым для этого грозного термина — объем операций выполняющихся в единицу времени, измеряющийся в мегагерцах (МГц);
Кэш — установленная прямо в процессор память, её ещё называют буферной памятью, имеет два уровня — верхний и нижний. Первый получает активную информацию, второй – неиспользуемую на данный момент. Процесс получения информации идет с третьего уровня во второй, а потом в первый, ненужная информация проделывает обратный путь;
Количество ядер — в ЦП их может быть от одного до нескольких. В зависимости от количества процессор будет называться двухъядерных, четырех ядерным и т.д. Соответственно от их числа будет зависеть мощность;
Энергопотребление и тепловыделение

Тут все просто – чем выше процессор «съедает» энергии, тем больше тепла он выделит, обращайте внимание на этот пункт, чтобы выбрать соответствующий кулер охлаждения и блок питания.
Интегрированная графика – у AMD первые такие разработки появились в 2006, у Intel с 2010. Первые показывают больший результат, чем конкуренты

Но все равно, до флагманских видеокарт пока ни один из них не смог дотянуть.

Архитектура фон Неймана

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.
Д. фон Нейман придумал схему постройки компьютера в 1946 году.
В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;
  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;
  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;
  4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
  5. Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм полезной работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки аппаратного прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.
Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

ТТХ процессора

Тактовая частота означает число операций в секунду. Выполнение отдельных операций может занимать от нескольких долей такта до десятков тактов. Измеряется в мегагерцах (миллион тактов в секунду) или гигагерцах (миллиард тактов в секунду). Чем выше тактовая частота, тем быстрее ЦПУ обрабатывает входящую информацию.

Разрядность — количество битов (разрядов двоичного кода), обрабатываемое центральным процессором за единицу времени. Современные процессоры — 32- или 64-разрядные, то есть они обрабатывают 32 или 64 бита информации за один такт. Разрядность процессора также влияет на количество оперативной памяти, которое можно установить в компьютер. Только 64-разрядный процессор поддерживает более 4 ГБ ОЗУ.

Количество ядер — еще одна важная характеристика процессора. Современные ЦПУ могут иметь от одного до нескольких вычислительных ядер на одном кристалле. Одноядерные процессоры выполняют несколько задач не одновременно, а последовательно, при этом выполнение отдельных операций занимает доли секунды. Двухъядерный процессор способен выполнять две задачи одновременно, четырехъядерный — четыре и т.д., что позволяет с полным правом называть современные компьютеры многозадачными. С одной стороны, чем больше ядер у процессора, тем мощнее и производительнее становится компьютер. Но есть и нюансы. Так, если выполняемая на компьютере программа не оптимизирована под многопоточность, то и выполняться она будет только одним ядром, не позволяя в должной мере прочувствовать всю мощь устройства.

Размер кэш-памяти — другой параметр, от которого зависит производительность процессора. Это быстродействующая память внутри процессора, служащая буфером между ядром процессора и оперативной памятью и обеспечивающая ускоренный доступ к блокам обрабатываемой в настоящий момент информации. Кэш-память гораздо быстрее оперативной памяти, поскольку ядра процессора взаимодействуют с ней напрямую. Современные процессоры имеют несколько уровней кэш-памяти (L1, L2, L3). Первый уровень — хоть и незначительный по объему (всего сотни килобайт), но самый быстродействующий (и дорогой), так как находится на самом кристалле процессора и работает на его тактовой частоте

С первым уровнем взаимодействует второй — он больше по объему, что особенно важно при ресурсоемкой работе, но имеет меньшую скорость. Многие процессоры имеют и третий, «медленный», но еще больший по объему уровень кэш-памяти, который все равно быстрее оперативной памяти системы

Это, конечно, далеко не полный перечень характеристик, но именно эти параметры оказывают наибольшее влияние на производительность вычислительного устройства, то, на что следует обращать пристальное внимание при выборе процессора

Но кроме технических характеристик важно также учитывать, где будет использоваться ЦПУ. Устанавливать процессор для сервера в обычный персональный компьютер не имеет особого смысла — современные десктопные процессоры достаточно мощные и производительные, а стоят дешевле

А ставить процессор для компьютера в сервер в целях, например, экономии, — не очень хорошая идея. Почему? Рассмотрим дальше

Устанавливать процессор для сервера в обычный персональный компьютер не имеет особого смысла — современные десктопные процессоры достаточно мощные и производительные, а стоят дешевле. А ставить процессор для компьютера в сервер в целях, например, экономии, — не очень хорошая идея. Почему? Рассмотрим дальше

Но кроме технических характеристик важно также учитывать, где будет использоваться ЦПУ. Устанавливать процессор для сервера в обычный персональный компьютер не имеет особого смысла — современные десктопные процессоры достаточно мощные и производительные, а стоят дешевле

А ставить процессор для компьютера в сервер в целях, например, экономии, — не очень хорошая идея. Почему? Рассмотрим дальше.

Характеристики, какие являются главными при выборе

Производители процессоров классифицируют выпускаемые компоненты, согласно сериям. Таким образом, существенно упрощается выбор устройств для решения разных задач. Процессор обладает рядом характеристик, наиболее важными из которых являются:

  • число ядер;
  • тактовая частота;
  • архитектура;
  • тепловыделение.

При выборе процессора следует обратить внимание на комплекс факторов, определяющих его производительность. Например, количество вычислительных ядер определяет производительность процессора

Многоядерные чипы содержат на одном кристалле или в одном корпусе несколько вычислительных ядер. Устройства для домашних ПК, как правило, обладают 8 ядрами, а процессоры для серверов — 12, как Opteron 6100. Ядра могут отличаться по эффективности, но с увеличением их количества возрастает производительность процессора. Количество потоков может не соответствовать числу ядер процессора. Чем больше потоков, тем эффективнее работа оборудования. За счет технологии Hyper-Threading, 4-ядерный процессор Intel Core i7-3820 работает в 8 потоков и по многим критериям превосходит 6-тиядерные аналоги устройств.

Кеш представляет собой достаточно быструю внутреннюю память процессора, необходимую для реализации функции буфера временного хранения информации, которая обрабатывается в определенный момент времени.

Чем больше кэш, тем лучше работает центральный процессор:

  1. Кэш-память 1-го уровня отличается высокой скоростью, расположена в ядре ЦП, что объясняет компактные размеры от 8 до 128 Кб.
  2. Кэш-память 2-го уровня находится в ЦП, но не в ядре. Она превосходит по скорости оперативную память, но уступает кэш-памяти 1-го уровня. Размер составляет от 128 Кбайт до нескольких Мбайт.
  3. Кэш-память 3-го уровня быстрее оперативной памяти, но медленнее кэш-памяти 2-го уровня.

Частота процессора определяет его производительность. Тактовая частота является частотой работы центрального процессора. В течение 1 такта реализуется несколько операций. Чем выше частота, тем выше быстродействие компьютера. Тактовая частота современных процессоров измеряется в гигагерцах (ГГц): 1 ГГц соответствует 1 миллиарду тактов в секунду.

Скорость шины процессора FSB, HyperTransport или QPI, с помощью которой происходит взаимодействие чипа с материнской платой. Данный показатель измеряют в мегагерцах. Чем больше скорость шины, тем лучше работает компьютер. Разрядность шин кратна 8. Данная характеристика показывает, какой объем данных в байтах можно передать в течение 1 такта. Большое значение имеет пропускная способность шины, которая равна произведению частоты системной шины и количества бит, передаваемых за 1 такт. Например, если при частоте системной шины в 100 Мгц за 1 такт передается 2 бита, то пропускная способность составит 200 Мбит/сек.

Большее количество транзисторов, меньшее энергопотребление и нагревание обеспечивает более тонкий техпроцесс. Данный показатель определяет TDP, то есть потребление и выделение процессором тепла. Величина Termal Design Point измеряется в Ваттах (Вт), зависит от числа ядер, техпроцесса изготовления и частоты, с которой работает процессор. Так называемые, «холодные» процессоры характеризуются TDP до 100 Вт. Путем разгона можно увеличить их производительность от 15% до 25%. При высоком TDP требуется установить эффективную систему охлаждения.

Кроме вычислительных ядер, процессоры нового поколения оснащены графическими ядрами. Они выполняют роль видеокарты. С их помощью можно играть в компьютерные игры, просматривать видео, работать с текстом и решать другие задачи. Выбор в пользу процессора со встроенным графическим ядром поможет сэкономить на покупке отдельного графического адаптера.

Тип и максимальная скорость поддерживаемой оперативной памяти определяет ее совместимость с процессором. Устройства поддерживают работу конкретного типа оперативной памяти:

  • DDR;
  • DDR2;
  • DDR3.

Сокет или разъем вставляется в процессор. Данные устройства не являются универсальными. Кроме того, материнская плата обладает только одним сокетом для процессора, который должен соответствовать его типу. Гнездовой или щелевой разъем, необходим, чтобы интегрировать чип в схему материнской платы. Каждый разъем допускает подключение конкретного типа процессоров:

  1. PGA (Pin Grid Array) — корпус квадратной или прямоугольной формы, штырьковые контакты.
  2. BGA (Ball Grid Array) — шарики припоя.
  3. LGA (Land Grid Array) — контактные площадки.

Самый мощный процессор АМД

В настоящее время самый мощный процессор AMD – это AMD Ryzen Threadripper 2990WX, вышедший в августе 2018 года. Этот новый процессор не просто лучший среди АМД, это, пожалуй, самый быстрый ЦП для ПК в мире. Он не только возглавляет топ процессоров AMD, но и обходит даже лучшие модели от Интел, включая i7-8700 и даже легендарный i9-9900К.

Формально данный ЦП вышел в линейке поколения, поддерживающего архитектуру Zen+, однако он разительно отличается от других представителей этой линейки. Характеристики данного ЦП впечатляют. Основное отличие от любых соперников заключается в том, что данный ЦП имеет просто фантастическое количество ядер – 32. Каждое из ядер ещё и разбивается на 2 потока, то есть общее число потоков у него составляет 64.

Микросхема, несмотря на то, что сделана по 12 нм техпроцессу получилась достаточно громоздкой – её площадь почти в 1.5 раза больше обычного Райзена, и для того, чтоб разместить его её на материнке используется не ставший уже стандартным разъём АМ4, а новый сокет TR4 с 4094 контактами.

Данный ЦП обладает кэшем 2-го уровня по 512 Кб на ядро и Кэшем 3-го уровня в 64 Мб. То есть, суммарный объём кэша составляет почти 80 Мб.

Работает ЦП на штатной частоте в 3000 МГц, однако, в нём предусмотрен турборежим с частотой 4200 МГц. ПЦ способен поддерживать до 64 линий PCI-Express версии 3.0, а также может работать с памятью DDR4-2933 в четырёхканальном режиме.

Мощность тепловыделения составляет 250 Вт. То есть для нормального охлаждения этого монстра необходим кулер с большой мощностью рассеивания тепла.

Сравнение быстродействия данного ЦП и его потенциальных конкурентов как от Интел, так и от АМД, показало, что при прочих равных условиях в стоимости одного потока Ryzen Threadripper оказывается в самом выигрышном положении.

Устройство процессора

Количество ядер

     Процессор является техническим устройством, играющим важную роль в нашей жизни. Люди используют его в электронных устройствах в медицине, образовании, военном деле и других отраслях. Процессоры используются не только в компьютерах, но и в телевизорах, телефонах, холодильниках. Развитие микропроцессоров расширило функциональные и вычислительные возможности электронных устройств. Современные процессоры могут содержать два (двухъядерные) и более (многоядерные) вычислительных ядра. Первоначально двухъядерные процессоры имели два независимых ядра. Каждое процессорное ядро представляет собой отдельный процессор с кэш-памятью первого и второго уровней. Самым производительным считается компьютер для игр, оснащенный процессором с четырьмя ядрами (рис. 2).

В настоящее время центр ядра составляет кэш-память второго уровня, она еще больше увеличивает производительность. У процессора появляется возможность одновременно выполнять несколько текущих команд. По-другому можно сказать, что многоядерный процессор – это множество одноядерных процессоров. На материнской плате они объединяются и взаимосвязываются. Производительность многоядерных процессоров увеличивается за счет того, что данные разделяются между несколькими ядрами для обработки. На рис. 4 представлена простейшая схема ядра процессора.

Рис. 2. 4-ядерный процессор

Рис. 3. 8-ядерный процессор

Американская компания Intel впервые выпустила 8-ядерный процессор Intel Core i7-5960X Extreme Edition (рис. 3). В процессоре размещен 1 млрд транзисторов.

Рис. 4. Простейшее устройство ядра процессора

Лидерами рынка являются процессоры фирмыNVIDIAIntelAMD

Басқа іс-әрекеттер

  • Сілтемені көшіру
  • Қате туралы хабарлау

Кеш-память процессора

Данные для последующей работы процессор получает из оперативной памяти, но внутри микросхем процессора сигналы обрабатываются с очень высокой частотой, а сами обращения к модулям ОЗУ проходят с частотой в разы меньше.

Высокий коэффициент внутреннего множителя частоты становится эффективнее, когда вся информация находится внутри него, в сравнение например, чем в оперативной памяти, то есть с наружи.

В процессоре немного ячеек для обработки данных, называемые регистрами, в них он обычно почти ничего не хранит, а для ускорения, как работы процессора, так и вместе с ним компьютерной системы была интегрирована технология кеширования.

Кешем можно назвать небольшой набор ячеек памяти, в свою очередь выполняющих роль буфера. Когда происходит считывание из общей памяти, копия появляется в кеш-памяти центрального процессора. Нужно это для того, чтобы при потребности в тех же данных доступ к ним был прямо под рукой, то есть в буфере, что увеличивает быстродействие.

Кеш-память в нынешних процессорах имеет пирамидальный вид:

Кеш-память 1-го уровня – самая наименьшая по объёму, но в тоже время самая быстрая по скорости, входит в состав кристалла процессора. Производится по тем же технологиям, что и регистры процессора, очень дорогая, но это стоит её скорости и надёжности. Хоть и измеряется сотнями килобайт, что очень мало, но играет огромную роль в быстродействие.
Кеш-память 2-го уровня – так же, как и 1-го уровня расположена на кристалле процессора и работает с частотой его ядра

В современных процессорах измеряется от сотен килобайт до нескольких мегабайт.
Кеш-память 3-го уровня медленнее предыдущих уровней этого вида памяти, но является быстродейственней оперативной памяти, что немаловажно, а измеряется десятками мегабайт.

Размеры кеш-память 1-го и 2-го уровней влияют как на производительность, так и на стоимость процессора. Третий уровень кеш-памяти — это своеобразный бонус в работе компьютера, но не один из производителей микропроцессоров им пренебрегать не спешит. Кеш-память 4-го уровня существует и оправдывает себя лиши в многопроцессорных системах, именно поэтому на обыкновенно компьютере его найти не удастся.

Основные характеристики центрального процессора

Основными считаются следующие характеристики:

— тип архитектуры или серия (CISC, Intel х86, RISC);

— система поддерживаемых команд (х86, IA-32, IA 64);

— расширения системы команд (ММХ, SSE, SSE2, 3Dnow!);

— конструктивное исполнение (Slot I, Slot 2, Socket 340, Socket 478, Slot A, Socket A);

— тактовая частота (МГц, ГГц);

— частота системной шины.

Компьютеры, содержащие процессоры, поддерживающие систему команд Intel x86 (фирм Intel, AMD, Cyrix, Transmeta), на которых может исполняться операционная система Microsoft Windows, называются Wmtel-компыотерами (от Windows и Intel).
Тип архитектуры, как правило, определяется фирмой-производителем оборудования. Все крупнейшие фирмы, производящие электронное оборудование для Wintel-совместимых компьютеров и выпускающие свои типы центральных процессоров, вносят изменения в базовую архитектуру процессоров серии Intel x86 или разрабатывают свою. С типом архитектуры тесно связан набор поддерживаемых команд или инструкций и их расширений. Эти два параметра, в основном, определяют качественный уровень возможностей персонального компьютера и в большой степени — уровень его производительное

Все современные процессоры имеют специальные системы команд, дополняющие набор инструкций Intel x86. Они рассчитаны на обработку графической и видеоинформации.
Они рассчитаны на обработку графической и видеоинформации. Набор ММХ (MultiMedia extension) поддерживается всеми х86-совместимь:ми процессорами. SSE появился в процессорах Pentium !!!, a SSE2 — в процессорах Pentium 4. 3Dnow! — фирменная технология фирмы AMD, используется в ее процессорах.

В настоящем время процессоры конструктивно изготовляют в виде квадратной микросхемы в корпусе PPGA (Plastic Pin Grid Array), со множеством ножек в нижней части (конструктив Socket). Для процессоров Pentium II был разработан Slot 1 — щелевой разъем с 242 контактами, впоследствии переименованный в SC242. В этот же слот устанавливались и некоторые процессоры Celeron и Pentium !!!.

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.
В настоящее время технология производства центральных процессоров с высокой производительностью предусматривает их работу на очень высоких тактовых частотах (до 3 ГГц), вследствие чего устройства необходимо принудительно охлаждать. Для принудительного охлаждения процессоров используются пассивные системы — в виде радиаторов и активные системы — в виде радиаторов с вентиляторами. Процессоры оснащаются внутренними схемами умножения базовой тактовой частоты материнской платы и умножают исходную тактовую частоту в несколько раз.
Однако все остальные устройства работают на базовой тактовой частоте. Тактирующий генератор расположен на материнской плате, а тактовая частота центрального процессора определяет его максимальные возможности работать на соответствующей частоте.

Таким образом, тактовая частота процессора — это еще не все. Существует тактовая частота системной шины, которая отвечает за передачу информации от одного устройства к другому. Естественно, что чем выше тактовая частота системной шины, тем быстрее будет передаваться информация между устройствами. К устройствам также относится и процессор. В настоящее время процессорами поддерживаются частоты внешней шины 66 МГц, 100 МГц и 133 МГц, а для процессоров Pentium 4 — 400 и 533 МГц.

Большое значение в общей технологии производства компьютерных систем имеет вопрос согласования возможностей и внутренних интерфейсов центрального процессора и набора интегральных микросхем — чипа, на базе которого построена материнская плата. Правильное их сочетание может резко повысить общую производительность, и наоборот. Поэтому рекомендуется устанавливать на материнские платы процессоры, указанные в руководстве фирмы-производителя платы.

Технологии производства центральных процессоров постоянно совершенствуются.

Характеристики процессора: тип техпроцесса

Развитие компьютерной техники принято связывать с появлением по мере совершенствования вычислительных технологий новых поколений ЭВМ. При этом, не считая показателей производительности, одним из критериев отнесения компьютера к тому или иному поколению может считаться его абсолютный размер. Самые первые ЭВМ были сопоставимы по величине с многоэтажным домом. Компьютеры второго поколения были сопоставимы по величине, к примеру, с диваном или пианино. ЭВМ следующего уровня уже были вплотную приближены к тем, что привычны для нас сейчас. В свою очередь, современные ПК — это компьютеры четвертого поколения.

Собственно, к чему все это? Дело в том, что в ходе эволюции ЭВМ сформировалось неофициальное правило: чем более технологично устройство, тем меньшими габаритами при той же производительности, а то и при большей — оно обладает. Оно в полной мере действует и в отношении рассматриваемой характеристики центрального процессора, а именно, техпроцесса его изготовления. В данном случае имеет значение расстояние между единичными кремниевыми кристаллами, формирующими структуру микросхемы. Чем оно меньше — тем больше плотность соответствующих элементов, которые размещает на себе плата центрального процессора. Тем более производительным он, соответственно, может считаться. Современные процессоры выполняются по техпроцессу 90-14 нм. Данный показатель имеет тенденцию к постепенному уменьшению.

Продлеваем жизнь

Итак, вы не уследили за своим процессором. Он начал перегреваться и перезагружать компьютер. Существует несколько возможных причин:

  1. Пыль. Если не чистить системный блок регулярно от пыли, то не только процессор, но и вся системная плата начнет перегреваться, что приведёт к потере производительности. Лучше всего проводить чистку каждые 2-3 месяца.
  2. Старая термопаста. Для обеспечения лучшего охлаждения процесссора в месте его соприкосновения с кулером намазывается тонкий слой специального вещества. Его замену лучше всего производить хотя бы раз в год.
  3. И последняя проблема, которая часто встречается в самостоятельных сборках, — неправильный монтаж. Если вы плохо закрепили процессор и его кулер, то, скорее всего, они плохо соприкасаются, а значит не обеспечивается достаточное охлаждение.

Надеемся, что знания о том, что такое cpu, пригодятся вам в жизни и помогут с выбором и уходом за вашим новым центральным процессором.

Возможности текстовых процессоров

Текстовые процессоры служат универсальным инструментом для создания разнообразных документов. Примерами результатов работы в приложениях являются:

  • книга;
  • отформатированный текстовый документ;
  • справочная документация, которая служит дополнением к продуктам или услугам;
  • цифровые версии ежедневных, еженедельных или ежемесячных журналов;
  • письма для конкретного адресата или массовой рассылки;
  • маркетинговый план по продвижению продуктов и услуг;
  • памятка для работы персонала;
  • отчетность;
  • резюме.

Текстовый процессор используют в качестве прикладной программы для создания текстовых документов на магнитном носителе, редактирования и форматирования файлов, просмотра содержимого на экране и в печатном виде. В настоящее время существует множество текстовых приложений, которые в основном работают с символьной информацией. 1 символ примерно занимает 1 байт памяти диска.

Символ служит минимальной единицей информации. Слова представляют собой символьные последовательности, которые разделены с помощью пробелов и знаков препинания. Строки являются более крупными единицами символьной информации. Они складываются в абзацы, страницы и текст. Для работы с каждым таким компонентом процессор наделен определенными возможностями:

  1. Автоматизация набора для упрощения и ускорения создания документов. К примеру, для того чтобы перейти на новую строку нет необходимости нажимать клавишу Enter.
  2. Создание текстов практически любых форматов, включая письма, дипломные проекты большого объема, оформление рекламы, приглашений, открыток, таблиц, диаграмм.
  3. Просмотр информации на дисплее, возможность внести правки в отдельные фрагменты без необходимости перепечатывать весь документ.
  4. Взаимодействие с другими программами для вставки разнообразных элементов таких, как графические изображения, электронные таблицы, графики, звуки, видеоизображения.
  5. Наличие большого набора разных шрифтов, опции изменения размера символов, использования жирного шрифта, курсива, подчеркивания.
  6. Проверка орфографии, грамматики, стилистики в автоматическом режиме в процессе ввода информации и по запросу.
  7. Возможность применения специальных шаблонов.
  8. Одновременное открытие и работа с множеством окон процессора.
  9. Наиболее распространенные ошибки автоматически исправляются.
  10. Многоколоночная верстка.
  11. Широкий выбор стилистического оформления для быстрого форматирования документов.
  12. Удобные инструменты для работы с колонтитулами, ссылками.
  13. Подготовка несложных гипертекстовых документов Internet.
  14. Ввод математических формул.
  15. Отправка готовых файлов с помощью факса или электронной почты.
  16. Помощь Мастера подсказок и объемной информационной базы.
  17. Печать определенных страниц и необходимого количества экземпляров документа.

Но сначала разберемся с диодом

Вдыхаем!

Кремний (он же Si – «silicium» в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы «–» касался p-стороны пластины, а «+» – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. «+» от источника к p-стороне, а «–» – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector